Андрей Смирнов
Время чтения: ~19 мин.
Просмотров: 38

Контроллер заряда солнечной батареи МРРТ или ШИМ — что лучше выбрать?

Хозяева загородных коттеджей все чаще используют комплекты гелиосистем, как один из альтернативных источников электрической энергии. В ее состав входят фотоэлектрические элементы, аккумуляторная батарея, контроллер заряда солнечной батареи, инвертор и другое оборудование. Данные системы могут работать автономно или вместе с основными электрическими сетями. Во всех случаях аккумулятор накапливает заряд, а потом отдает его потребителям, когда это необходимо. Контроллер обслуживает аккумуляторную батарею, не допуская ее перезарядки или чрезмерного разряда.

Содержание

Основные функции и работа контроллера

Устройство, контролирующее заряд, можно смело назвать одним из основных компонентов солнечных электростанций. Конструктивно, он является прибором электронного типа, функционирующим на основе специального чипа. Данный чип осуществляет контроль над действием всей системы, а его первоочередная задача состоит в управлении процессом зарядки аккумуляторной батареи. Таким образом, предотвращается избыточный ток или полный разряд аккумулятора.

Когда степень заряженности выходит на максимальный уровень, подача электричества от солнечных фотоэлементов сокращается и опускается до уровня, обеспечивающего компенсацию саморазряда. В случае сильной разрядки контроллер автоматически отключает батарею от нагрузки. После того как уровень заряда оказывается восстановлен, нагрузка снова подключается к источнику тока. Электрическая энергия, выработанная солнечными батареями, может передаваться на аккумулятор по разным схемам. Один из способов предусматривает прямую передачу тока, без каких-либо коммутационных и регулирующих устройств. В результате такой подачи, напряжение на клеммах станет постепенно расти, и в конце концов оно достигнет определенного уровня, в зависимости от конструкции АКБ и температуры окружающей среды. То есть, на начальной стадии зарядки такая схема полностью себя оправдывает.

Однако, после того как заряд превысит рекомендуемое значение, в батарее возникают негативные процессы. Ток, продолжающий поступать, приводит к росту напряжения и последующей перезарядке. Из-за этого нагрев электролита резко увеличивается, после чего он закипает и начинается интенсивный выброс дистиллированной воды, превратившейся в пар. В некоторых случаях емкости могут полностью высохнуть, что приводит к резкому снижению ресурса аккумулятора.

Во избежание подобных ситуаций зарядный ток ограничивается с помощью контроллеров. Эту операцию можно выполнять вручную, однако такой способ требует постоянного контроля напряжения по приборам и своевременного переключения. Поэтому в реальных условиях он практически не используется, поскольку существует автоматика.

Для ограничения тока используются разные контроллеры – от простых до более сложных. Условно они разделяются на следующие типы:

  • Приборы, где применяется схема обычного включения-отключения в зависимости от состояния напряжения на клеммах АКБ.
  • Устройства, использующие широтно-импульсные преобразования (ШИМ).
  • Контроллеры заряда солнечной батареи, сканирующий точки с максимальной мощностью (МРРТ).

Каждое из этих устройств следует рассмотреть более подробно, чтобы в дальнейшем не ошибиться и правильно выбрать нужный.

Простейшие контроллеры типа Откл/Вкл (или On/Off)

Аппараты данного вида относятся к самым простым и, как следствие, они считаются самыми дешевыми. При получении аккумулятором предельного заряда, специальное реле осуществляет разрыв цепи и ток от солнечной панели прекращает свое поступление. Фактически, во многих случаях батарея оказывается заряженной не до конца, что отрицательно сказывается на ее последующей работоспособности. В связи с этим, такие регуляторы нежелательно применять в качественных системах.

Контроллеры для солнечных батарей типа включения-отключения обладает крайне ограниченной функциональностью. Хотя он и предотвращает перегрев и перезарядку батареи, тем не менее, полного заряда не обеспечивает. Ток может достичь максимального значения и это вызовет отключение, однако сам заряд АКБ в этот момент составляет всего лишь 70-90%, то есть является неполным.

Подобное состояние также отрицательно сказывается на общей функциональности батареи и постепенно приводит к снижению эксплуатационного ресурса. В таких ситуациях для полноценной зарядки дополнительно требуется не менее 3-4 часов.

Контроллеры для аккумуляторов типа PWM

Более технологичным и эффективным считаются контроллеры заряда аккумулятора от солнечной батареи типа PWM, сокращенное название которого получилось от Pulse-Width Modulation. В переводе на русский язык данное устройство относится к категории ШИМ, то есть в его работе используется широтно-импульсная модуляция тока.

Основной функцией прибора является устранение проблем, возникающих при неполной зарядке. Полного уровня удается достичь благодаря возможности понижения тока, когда он достигает максимального значения. Зарядка становится более продолжительной, но и эффект от нее значительно выше.

Работа контроллера осуществляется следующим образом. Перед входом в прибор электрический ток попадает в стабилизирующий компонент и резистивную разделительную цепочку. На этом участке потенциалы входного напряжения выравниваются, обеспечивая тем самым защиту самого контроллера. В разных моделях граничное входное напряжение может отличаться.

Далее в работу включаются силовые транзисторы, ограничивающие ток и напряжение до установленных значений. Они находятся под управлением чипа, использующего микросхему драйвера. После этого выходное напряжение транзисторов приобретает нормальные параметры, подходящие для зарядки аккумулятора. Данная схема дополняется температурным датчиком и драйвером. Последний компонент воздействует на силовой транзистор, выполняющий регулировку мощности подключенной нагрузки.

Таким образом, АКБ оказывается защищенной от глубокой разрядки. Температурный датчик контролирует степень нагрева наиболее важных деталей контроллера. В случае повышения температуры более чем это установлено в настройках, происходит автоматическое отключение всех цепочек активного питания. В результате, батарея поддерживается в хорошем состоянии, а срок ее эксплуатации значительно увеличивается.

Устройства МРРТ

Наиболее эффективными и стабильными считаются контроллеры для солнечной батареи модификации МРРТ – Maximum Power Point Tracking. Данные устройства осуществляют слежение за мощностью заряда по достижении максимального предела. В этом процессе используются сложные алгоритмы контроля показаний напряжения и тока, устанавливается наиболее оптимальное соотношение характеристик, обеспечивающих максимальную эффективность солнечной системы.

В процессе эксплуатации практически установлено, что контроллер для солнечных батарей mppt является более совершенным и существенно отличается от других моделей. По сравнению с приборами PWM, он эффективнее примерно на 35%, соответственно на столько же продуктивнее получается и сама система.

Более высокое качество и надежность таких устройств достигается за счет сложной схемы, дополненной компонентами, обеспечивающими тщательный контроль в соответствии с условиями эксплуатации. Специальные схемы выполняют слежение и сравнение уровней тока и напряжения, после чего определяется максимальная выходная мощность.

Главной особенностью контроллеров МРРТ является способность настройки солнечной панели на максимальную мощность вне зависимости от погоды в данный момент. Таким образом, батарея работает более эффективно и обеспечивает необходимый заряд АКБ.

Порядок подключения контроллеров PWM

Общим условием подключения, обязательным для всех контроллеров, является их соответствие используемым солнечным фотоэлементам. Если прибор должен работать с входным напряжением 100 вольт, то на выходе панели оно не должно превышать этого значения.

Перед подключением контрольной аппаратуры необходимо выбрать место установки. Помещение должно быть сухим, с хорошей вентиляцией, из него нужно заранее убрать все пожароопасные материалы, а также ликвидировать причины влажности, излишней теплоты и вибраций. Обеспечивается защита от прямого ультрафиолетового излучения и негативных воздействий окружающей среды.

При подключении в общую схему контроллеров PWM необходимо точное соблюдение последовательности операций, а все периферийные устройства соединяются через свои контактные клеммы:

  • Клеммы АКБ соединяются с клеммами прибора с соблюдением полярности.
  • В месте контакта с положительным проводником выполняется установка защитного предохранителя.
  • Далее подключаются солнечные панели так же с соблюдением полярности проводов и клемм.
  • Правильность подключений проверяется контрольной лампой на 12 или 24 В, подключенной к выводам нагрузки.

Порядок действий должен обязательно соблюдаться. Например, ни в коем случае нельзя подключать солнечные панели к контроллеру, не подключенному к аккумулятору. В этом случае напряжение не найдет выхода и прибор может сгореть. Инвертор не должен подключаться к контроллеру через клеммы нагрузки, а соединяться напрямую с клеммами АКБ.

Порядок подключения устройств МРРТ

Подключение контроллеров МРРТ в целом выполняется так же, как и в других устройств. Существуют некоторые отличия в технологии, связанные с повышенной мощностью такой аппаратуры. В связи с этим потребуется кабель для силового подключения, способный выдерживать плотность тока минимум 4 А/мм2. Если МРРТ контроллер рассчитан на ток 60 А, то сечение кабеля, подключаемого к АКБ, составит не менее 20 мм2.

На концах соединительных кабелей должны быть установлены медные наконечники, обжатые как можно плотнее. К отрицательным клеммам АКБ и солнечной панели подключаются переходники с выключателями и предохранителями. Это позволит снизить потери электроэнергии и обеспечить безопасность в процессе эксплуатации.

Все подключения к прибору МРРТ осуществляются в следующем порядке:

  • Выключатели в переходниках АКБ и панели устанавливаются в отключенное положение.
  • Далее производится извлечение защитных предохранителей.
  • Клеммы контроллера, предназначенные для АКБ, соединяются кабелем с клеммами аккумулятора.
  • К соответствующим клеммам контроллера подключаются выходные провода от солнечной батареи.
  • Клемма заземления прибора соединяется с заземляющей шиной.
  • В соответствии с инструкцией на контроллере устанавливается датчик температуры.

По завершении всех операций предохранитель АКБ вставляется на свое место, а выключатель переводится во включенное положение. На дисплее контрольного устройства должен появиться сигнал о том, что аккумулятор обнаружен. Через небольшой промежуток времени те же операции проделываются с предохранителем и выключателем солнечной панели. На экране прибора появится значение ее напряжения, что означает успешный запуск в работу всей энергетической установки.

Читайте далее:

Установка солнечных батарей

Солнечные батареи для дома

Производство солнечных батарей

Инверторы для солнечных батарей

Расчет солнечных батарей

Аккумуляторы для солнечных батарей

Солнечная энергетика пока что ограничивается (на бытовом уровне) созданием фотоэлектрических панелей относительно невысокой мощности. Но независимо от конструкции фотоэлектрического преобразователя света солнца в ток это устройство оснащается модулем, который называют контроллер заряда солнечной батареи.

Действительно, в схему установки фотосинтеза солнечного света входит аккумуляторная батарея – накопитель энергии, получаемой от солнечной панели. Именно этот вторичный источник энергии обслуживается в первую очередь контроллером.

В представленной нами статье разберемся в устройстве и принципах работы этого прибора, а также рассмотрим способы его подключения.

Контроллеры для солнечных батарей

Электронный модуль, называемый контроллером для солнечной батареи, предназначен выполнять целый ряд контрольных функций в процессе заряда/разряда аккумулятора солнечной батареи.

Когда на поверхность солнечной панели, установленной, к примеру, на крыше дома, падает солнечный свет, фотоэлементами устройства этот свет преобразуется в электрический ток.

Галерея изображенийКонтроллер — обязательная составляющая гелиостанции, вырабатывающей электрический ток из энергии солнечного светаВладельцам частных мини электростанций и желающим обзавестись солнечной энергетической установкой представлено сейчас два вида контроллеров: PWM (или ШИМ) и MPPTКонтролеры ШИМ обеспечивают выполнение многоступенчатого заряда аккумулятора. С их помощью осуществляется наполнение, выравнивание, поглощение и поддержка зарядаНедорогие модели контроллеров для бытовых солнечных установок снабжены светодиодной индикацией, позволяющей следить за рабочими характеристиками и техническим состоянием батареиMPPT (maximum power point tracking) — контроллеры более высокого уровня и цены. В них предусмотрено отслеживание точки максимальной мощностиДля небольших солнечных электростанций, в составе которых одна-две панели, достаточно возможностей контроллеров ШИМ (PWM)Оба вида контроллеров, как и подключенные к схеме аккумуляторы должны устанавливаться в помещении, так как в их конструкции имеются чувствительные к температуре датчикиВ покупке контроллера нет необходимости, если вы приобретаете комплексную солнечную станцию. В ее изолированном корпусе есть весь набор устройств, требующихся для обработки и накопления электроэнергииКонтроллеры для солнечных панелейКонтроллер с широко-импульсной модуляциейПрибор для многоуровневого заряда батареиБюджетная модель со светодиодной индикацийКонтроллер для солнечной станции МРРТНебольшая гелиостанция для дачиПодключение солнечных панелей к аппаратуреКомплекс из солнечных батарей и аппаратуры

Полученная энергия, по сути, могла бы подаваться непосредственно на аккумулятор-накопитель. Однако процесс зарядки/разрядки АКБ имеет свои тонкости (определённые уровни токов и напряжений). Если пренебречь этими тонкостями, АКБ за короткий срок эксплуатации попросту выйдет из строя.

Чтобы не иметь таких грустных последствий, предназначен модуль, именуемый контроллером заряда для солнечной батареи.

Помимо контроля уровня заряда аккумулятора, модуль также отслеживает потребление энергии. В зависимости от степени разряда, схемой контроллера заряда аккумулятора от солнечной батареи регулируется и устанавливается уровень тока, необходимый для начального и последующего заряда.

kontroller_batarei_1-430x430.jpgВ зависимости от мощности контроллера заряда аккумуляторных батарей солнечной энергетической установки, конструкции этих устройств могут иметь самую разную конфигурацию

В общем, если говорить простым языком, модуль обеспечивает беззаботную «жизнь» для АКБ, что периодически накапливает и отдаёт энергию устройствам-потребителям.

Применяемые на практике виды

На промышленном уровне налажен и осуществляется выпуск двух видов электронных устройств, исполнение которых подходит для установки в схему солнечной энергетической системы:

  1. Устройства серии PWM.
  2. Устройства серии MPPT.

Первый вид контроллера для солнечной батареи можно назвать «старичком». Такие схемы разрабатывались и внедрялись в эксплуатацию ещё на заре становления солнечной и  ветряной энергетики.

Принцип работы схемы PWM контроллера основан на алгоритмах широтно-импульсной модуляции. Функциональность таких аппаратов несколько уступает более совершенным устройствам серии MPPT, но в целом работают они тоже вполне эффективно.

kontroller_batarei_2-430x301.jpgОдна из популярных в обществе моделей контроллера заряда АКБ солнечной станции, несмотря на то, что схема устройства выполнена по технологии PWM, которую считают устаревшей

Конструкции, где применяется технология Maximum Power Point Tracking (отслеживание максимальной границы мощности), отличаются современным подходом к схемотехническим решениям, обеспечивают большую функциональность.

Но если сравнивать оба вида контроллера и, тем более, с уклоном в сторону бытовой сферы, MPPT устройства выглядят не в том радужном свете, в котором их традиционно рекламируют.

Контроллер типа MPPT:

  • имеет более высокую стоимость;
  • обладает сложным алгоритмом настройки;
  • даёт выигрыш по мощности только на панелях значительной площади.

Этот вид оборудования больше подходит для систем глобальной солнечной энергетики.

kontroller_batarei_3-430x328.jpgКонтроллер, предназначенный под эксплуатацию в составе конструкции солнечной энергетической установки. Является представителем класса аппаратов MPPT – более совершенных и эффективных

Под нужды обычного пользователя из бытовой среды, имеющего, как правило, панели малой площади, выгоднее купить и с тем же эффектом эксплуатировать ШИМ-контроллер (PWM).

Структурные схемы контроллеров

Принципиальные схемы контроллеров PWM и MPPT для рассмотрения их обывательским взглядом – это слишком сложный момент, сопряжённый с тонким пониманием электроники. Поэтому логично рассмотреть лишь структурные схемы. Такой подход понятен широкому кругу лиц.

Вариант #1 – устройства PWM

Напряжение от солнечной панели по двум проводникам (плюсовой и минусовой) приходит на стабилизирующий элемент и  разделительную резистивную цепочку. За счёт этого куска схемы получают выравнивание потенциалов входного напряжения и в какой-то степени организуют защиту входа контроллера от превышения границы напряжения входа.

Здесь следует подчеркнуть: каждая отдельно взятая модель аппарата имеет конкретную границу по напряжению входа (указано в документации).

sh-kontrollera-pwm_1-430x246.jpgТак примерно выглядит структурная схема устройств, выполненных на базе PWM технологий. Для эксплуатации в составе небольших бытовых станций такой схемный подход обеспечивает вполне достаточную эффективность

Далее напряжение и ток ограничиваются до необходимой величины силовыми транзисторами. Эти компоненты схемы, в свою очередь, управляются чипом контроллера через микросхему драйвера. В результате на выходе пары силовых транзисторов устанавливается нормальное значение напряжения и тока для аккумулятора.

Также в схеме присутствует датчик температуры и драйвер, управляющий силовым транзистором, которым регулируется мощность нагрузки (защита от глубокой разрядки АКБ). Датчиком температуры контролируется состояние нагрева важных элементов контроллера PWM.

Обычно уровень температуры внутри корпуса или на радиаторах силовых транзисторов. Если температура выходит за границы установленной в настройках, прибор отключает все линии активного питания.

Вариант #2 – приборы MPPT

Сложность схемы в данном случае обусловлена её дополнением целым рядом элементов, которые выстраивают необходимый алгоритм контроля более тщательно, исходя из условий работы.

Уровни напряжения и тока отслеживаются и сравниваются схемами компараторов, а по результатам сравнения определяется максимум мощности по выходу.

sh-mppt-kontrollera.jpgСхемное решение в структурном виде для контроллеров заряда, основанных на технологиях MPPT. Здесь уже отмечается более сложный алгоритм контроля и управления периферийными устройствами

Главное отличие этого вида контроллеров от приборов PWM в том, что они способны подстраивать энергетический солнечный модуль на максимум мощности независимо от погодных условий.

Схемой таких устройств реализуются несколько методов контроля:

  • возмущения и наблюдения;
  • возрастающей проводимости;
  • токовой развёртки;
  • постоянного напряжения.

А в конечном отрезке общего действия применяется ещё алгоритм сравнения всех этих методов.

Способы подключения контроллеров

Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей.

Так, например, если используется контроллер, рассчитанный на максимум  входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.

sh-balansa-napryajenii.jpgЛюбая солнечная энергетическая установка действует по правилу баланса выходного и входного напряжений первой ступени. Верхняя граница напряжения контроллера должна соответствовать верхней границе напряжения панели

Прежде чем подключать аппарат, необходимо определиться с местом его физической установки. Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.

Недопустимо наличие в непосредственной близости от прибора источников вибраций, тепла и влажности. Место установки необходимо защитить от попадания атмосферных осадков и прямых солнечных лучей.

Техника подключения моделей PWM

Практически все производители PWM-контроллеров требуют соблюдать точную последовательность подключения приборов.

soo-podkluchenii-kontrollera.jpgТехника соединения контроллеров PWM с периферийными устройствами особыми сложностями не выделяется. Каждая плата оснащена маркированными клеммами. Здесь попросту требуется соблюдать последовательность действий

Подключать периферийные устройства нужно в полном соответствии с обозначениями контактных клемм:

  1. Соединить провода АКБ на клеммах прибора для аккумулятора в соответствии с указанной полярностью.
  2. Непосредственно в точке контакта положительного провода включить защитный предохранитель.
  3. На контактах контроллера, предназначенных для солнечной панели, закрепить проводники, выходящие от солнечной батареи панелей. Соблюдать полярность.
  4. Подключить к выводам нагрузки прибора контрольную лампу соответствующего напряжения (обычно 12/24В).

Указанная последовательность не должна нарушаться. К примеру, подключать солнечные панели в первую очередь при неподключенном аккумуляторе категорически запрещается. Такими действиями пользователь рискует «сжечь» прибор. В этом материале более подробно описана схема сборки солнечных батарей с аккумулятором.

Также для контроллеров серии PWM недопустимо подключение инвертора напряжения на клеммы нагрузки контроллера. Инвертор следует соединять непосредственно с клеммами АКБ.

Порядок подключения приборов MPPT

Общие требования по физической инсталляции для этого вида аппаратов не отличаются от предыдущих систем. Но технологическая установка зачастую несколько иная, так как контроллеры MPPT зачастую рассматриваются аппаратами более мощными.

kontroller_dlja_batarei_4-430x157.jpgДля контроллеров, рассчитанных под высокие уровни мощностей, на соединениях силовых цепей рекомендуется применять кабели больших сечений, оснащённые металлическими концевиками

Например, для мощных систем эти требования дополняются тем, что производители рекомендуют брать кабель для линий силовых подключений, рассчитанный на плотность тока не менее чем 4 А/мм2. То есть, например, для контроллера на ток 60 А нужен кабель для подключения к АКБ сечением не меньше 20 мм2.

Соединительные кабели обязательно оснащаются медными наконечниками, плотно обжатыми специальным инструментом. Отрицательные клеммы солнечной панели и аккумулятора необходимо оснастить переходниками с предохранителями и выключателями.

Такой подход исключает энергетические потери и обеспечивает безопасную эксплуатацию установки.

sh-podklucheniya-mppt1.jpgСтруктурная схема подключения мощного контроллера MPPT: 1 – солнечная панель; 2 – контроллер MPPT; 3 – клеммник; 4,5 – предохранители плавкие; 6 – выключатель питания контроллера; 7,8 – земляная шина

Перед подключением солнечных панелей к прибору следует убедиться, что напряжение на клеммах соответствует или меньше напряжения, которое допустимо подавать на вход контроллера.

Подключение периферии к аппарату MTTP:

  1. Выключатели панели и аккумулятора перевести в положение «отключено».
  2. Извлечь защитные предохранители на панели и аккумуляторе.
  3. Соединить кабелем клеммы аккумулятора с клеммами контроллера для АКБ.
  4. Подключить кабелем выводы солнечной панели с клеммами контроллера, обозначенными соответствующим знаком.
  5. Соединить кабелем клемму заземления с шиной «земли».
  6. Установить температурный датчик на контроллере согласно инструкции.

После этих действий необходимо вставить на место ранее извлечённый предохранитель АКБ и перевести выключатель в положение «включено». На экране контроллера появится сигнал обнаружения аккумулятора.

Далее, после непродолжительной паузы (1-2 мин), поставить на место ранее извлечённый предохранитель солнечной панели и перевести выключатель панели в положение «включено».

Экран прибора покажет значение напряжения солнечной панели. Этот момент свидетельствует об успешном запуске энергетической солнечной установки в работу.

Выводы и полезное видео по теме

Промышленностью выпускаются устройства многоплановые с точки зрения схемных решений. Поэтому однозначных рекомендаций относительно подключения всех без исключения установок дать невозможно.

Однако главный принцип для любых типов приборов остаётся единым: без подключения АКБ на шины контроллера соединение с фотоэлектрическими панелями недопустимо. Аналогичные требования предъявляются и для включения в схему инвертора напряжения. Его следует рассматривать как отдельный модуль, подключаемый на АКБ прямым контактом.

Если у вас есть необходимый опыт или знания, пожалуйста, поделитесь им с нашими читателями. Оставляйте свои комментарии в расположенном ниже блоке. Здесь же можно задать вопрос по теме статьи.

Энергия и элементы питанияЭкологияЭлектроника для начинающихПривет geektimes! В предыдущей части была рассмотрена и проверена работа платы BMS, обеспечивающей корректный заряд литий-ионного аккумулятора. Китайская почта наконец доставила Solar charge controller, так что пора протестировать и его. 2a130e21463042b8968e73f5defde666.jpg Результаты тестирования под катом.

Контроллер заряда (Solar charge controller)

Данное устройство является основным во всей системе — именно контроллер обеспечивает взаимодействие всех компонентов — солнечной панели, нагрузки и батареи (он нужен, только если мы хотим именно накапливать энергию в батарее, если отдавать энергию сразу в электросеть, нужен другой тип контроллера grid tie). Контроллеров на небольшие токи (10-20А) на рынке довольно-таки много, но т.к. в нашем случае используется литиевая батарея вместо свинцовой, то нужно выбирать контроллер с настраиваемыми (adjustable) параметрами. Был куплен контроллер, как на фото, цена вопроса от 13$ на eBay до 20-30$ в зависимости от жадности местных продавцов. Контроллер гордо называется «Intelligent PWM Solar Panel Charge Controller», хотя по сути вся его «интеллектуальность» заключается в возможности задания порогов заряда и разряда, и конструктивно он не сильно отличается от обычного DC-DC конвертора. Подключение контроллера весьма просто, у него всего 3 разъема — для солнечной панели, нагрузки и аккумулятора соответственно. В качестве нагрузки в моем случае была подключена светодиодная лента на 12В, аккумулятор все тот же тестовый с Hobbyking. Также на контроллере есть 2 USB-разъема, от которых можно заряжать различные устройства. Все вместе выглядело так:d82009c09d07497fa8647f149c5c77e8.jpg Перед тем как использовать контроллер, его надо настроить. Контроллеры этой модели продаются в разных модификациях для разных типов батарей, отличия скорее всего лишь в предустановленных параметрах. Для моей литиевой батареи c тремя ячейками (3S1P) я установил следующие значения:9e1b82bcb91c46619ed6d076a8291f6b.jpg Как можно видеть, напряжение отключения заряда (PV OFF) установлено на 12.5В (исходя из 4.2В на ячейку можно было поставить 12.6, но небольшой недозаряд положительно сказывается на количестве циклов батареи). Следующие 2 параметра — отключение нагрузки, в моем случае настроено на 10В, и повторное включение заряда на 10.5В. Минимальное значение можно было поставить и меньше, до 9.6В, небольшой запас был оставлен для работы самого контроллера, который питается от той же батареи.

Тестирование

С разрядом проблем ожидаемо не было. Заряда батареи хватило чтобы зарядить планшет, также горела светодиодная лента, и при пороговом напряжении в 10В, лента погасла — контроллер отключил нагрузку, чтобы не разряжать батарею ниже заданного порога. А вот с зарядом все пошло не совсем так. Вначале все было хорошо, и максимальная мощность по ваттметру составила около 50Вт, что вполне неплохо. Но ближе к концу заряда подключенная в качестве нагрузки лента стала сильно мерцать. Причина ясна и без осциллографа — две BMS не очень дружат между собой. Как только напряжение на одной из ячеек достигает порога, BMS отключает батарею, из-за чего отключается и нагрузка и контроллер, затем процесс повторяется. Да и учитывая что пороговые напряжения уже заданы в контроллере, вторая плата защиты по сути и не нужна. Пришлось вернуться к плану «Б» — поставить на батарею только плату балансировки, оставив контроллеру управление зарядом. Плата 3S balance board выглядит так:c9f84d61c514435eb36d7d2e7203ad22.jpg Бонус этого балансира еще и в том, что он в 2 раза дешевле. Конструкция получилась даже проще и красивее — балансир занял свое «законное» место на балансировочном разъеме батареи, к контроллеру батарея подключена через силовой разъем. Все вместе выглядит примерно так:d40b4922689b42439bb86f6917385331.jpg Больше никаких неожиданностей не было. Когда напряжение на батарее поднялось до 12.5В, потребляемая от панелей мощность упала практически до нуля а напряжение увеличилось до максимума «холостого хода» (22В), т.е. заряд больше не идет.5956e9d6a5114b879157281a5f6f52aa.jpg Напряжение на 3х ячейках батареи в конце заряда составило 4.16В, 4.16В и 4.16В, что дает в сумме 12.48В, к контролю заряда, как и к балансиру претензий нет.

Заключение

Система работает, почти как и ожидалось. Днем электроэнергия может накапливаться, вечером ее можно использовать. В финальной версии батарея будет заменена на блок из элементов 18650, которые уже описывались в предыдущей части. Емкость батареи можно увеличить до 20Ач, больше для балконной системы уже избыточно. Если же приобрести другой балансир, можно использовать и LiFePo4-аккумуляторы, достаточно установить нужные пороги напряжений в контроллере. Однако в моем случае, смысла в этом скорее всего нет — стоимость LiFePo4 на 10-20Ач составляет 80-100$, что уже сопоставимо со стоимостью Grid Tie контроллера, который я собираюсь протестировать в дальнейшем. Продолжение в следующей части. Еще исключительно для тестов (понятно что экономического смысла в этом нет) была заказана батарея ионисторов на 12В, благо цены падают и сейчас они относительно дешевые. Будет интересно проверить, на сколько хватит их заряда. Stay tuned.Примечание: показанная на фото батарея от Hobbyking была поставлена исключительно для теста. Эти батареи не тестировались для постоянного использования в подобных системах, также их не рекомендуется оставлять без присмотра. Более-менее окончательная версия батареи выглядит вот так:0e525ec4bb0e4e499b5ebab84df05503.jpg Это 12 ячеек 18650, соединенных в группы параллельно по 4. Примерная емкость батареи около 12ач, этого хватает для зарядки разных гаджетов и для вечернего освещения комнаты светодиодной лентой. В батарее используются элементы Panasonic, те же что и в автомобилях Tesla S, надежность данных ячеек можно считать вполне хорошей. Для желающих посмотреть видео-версию, ролик выложен в youtube.Используемые источники:

  • https://electric-220.ru/news/kontroller_zarjada_dlja_solnechnoj_batarei/2019-01-25-1638
  • https://sovet-ingenera.com/eco-energy/sun/kontroller-zaryada-solnechnoj-batarei.html
  • https://m.habr.com/ru/post/404035/

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации