Андрей Смирнов
Время чтения: ~11 мин.
Просмотров: 15

Параллельный колебательный контур

Настройка контура

Для плавной настройки приемника обычно используется конденсатор переменной емкости (лист 92). Такой конденсатор состоит из двух частей: неподвижной — статора и подвижной — ротора. Статор и ротор собраны из тонких пластин, причем ротор соединен с металлическим корпусом конденсатора, а статор изолирован от него. Большое число пластин необходимо для того, чтобы получить сравнительно большую емкость при небольших габаритах конденсатора. При монтаже ротор, как правило, соединяют с нижним (по схеме) концом катушки, то есть фактически заземляют. При повороте ротора изменяется расстояние между его пластинами и пластинами статора, а вместе с этим изменяется и емкость конденсатора. Основной характеристикой таких конденсаторов является максимальная емкость Смакс (пластины полностью введены) и минимальная емкость Смин (пластины полностью выведены). На схемах указываются обе эти величины (через тире).

Широкое распространение получили стандартные блоки, состоящие из двух конденсаторов переменной емкости (двух секций), каждый из которых имеет максимальную емкость Смакс = 450 (520) пф и минимальную Смин= 15 (25) пф. Роторы обеих секций соединены между собой, так как они закреплены на общей металлической оси. На схеме конденсаторы, роторы которых закреплены на одной оси, соединяют пунктирной линией. В случае необходимости, например в детекторном приемнике, можно использовать только одну секцию блока, не подключая никуда статор второй секции.

Для перехода с одного диапазона на другой в контуре осуществляется переключение катушек. Так, например, для перехода с длинных волн на средние индуктивность катушки Lк уменьшают примерно в десять раз, а при переходе на короткие волны — еще в десять-двадцать раз. Конденсатор настройки на всех диапазонах используется один и тот же, а катушки к нему подключаются с помощью переключателя (переключатель диапазонов, рис. 56).

ris56.jpg

Для того чтобы при налаживании приемника можно было точно подогнать границы диапазона, в контур вводят элементы подстройки. Один из этих элементов — это подключенный непосредственно к катушке, а следовательно, определяющий общую емкость контура, подстроечный конденсатор Сп (лист 93), емкость которого можно изменять от 5-10 до 25-30 пф. Этот конденсатор (его иногда называют «триммер») особенно сильно влияет на настройку контура на самых высоких частотах, когда ротор конденсатора настройки выведен. Это объясняется тем, что подстроечный конденсатор фактически подключен параллельно конденсатору настройки Ск, и общая емкость контура определяется их суммой.

Когда емкость конденсатора настройки Ск мала, то даже небольшие изменения емкости Сп оказываются весьма ощутимыми. Если же полностью ввести ротор конденсатора Ск, то на фоне его большой емкости влияние Сп будет незначительным. Сказанное хорошо иллюстрируется простым примером. Допустим, что емкость Ск изменяется от 20 пф до 500 пф, а емкость Сп можно менять в пределах 5-30 пф. При выведенном роторе конденсатора настройки (Ск=20 пф) общую емкость контура можно менять с помощью Сп от 25 пф (20+5) до 50 пф (20+30), то есть в два раза. Когда же мы введем ротор (Ск=500 пф), то общую емкость контура можно будет менять лишь на 5% — от 505 пф (500+5) до 530 пф (500+30). Поэтому мы и говорим, что в основном Сп влияет на резонансную частоту контура на самых высоких частотах диапазона, то есть при минимальной емкости конденсатора Ск (рис. 57, 58).

После налаживания приемника, когда емкость подстроечного конденсатора Сп окончательно подобрана, к нему больше не прикасаются.

Чаще всего встречаются следующие типы подстроечных конденсаторов: воздушный, очень напоминающий обычный конденсатор настройки с небольшим числом миниатюрных статорных и роторных пластин; трубчатый, в котором обе обкладки имеют форму цилиндров (наподобие конденсатора КТК), один из которых перемещается с помощью винта; дисковый керамический, состоящий из двух керамических частей — основания и поворачивающегося диска, на который нанесен слой серебра — одна из обкладок конденсатора. Вторая обкладка закреплена на керамическом основании. При вращении керамического диска меняется взаимное расположение обкладок, а следовательно, и емкость конденсатора. Во всех случаях подстроечный конденсатор обозначается на схеме как обычный постоянный, с той лишь разницей, что нижняя черточка рисуется в виде дуги со стрелкой.

Очень удобно производить подстройку контура, если в катушке имеется ферромагнитный сердечник. Вдвигая такой сердечник в катушку, мы увеличиваем ее индуктивность и уменьшаем резонансную частоту контура. Если катушка выполнена из двух отдельных секций, то ее индуктивность можно изменять, сближая либо раздвигая секции: чем ближе одна секция к другой, тем сильнее взаимодействуют их магнитные поля, как бы усиливая друг друга, тем, следовательно, больше общая индуктивность катушки (лист 96). Сказанное справедливо лишь тогда, когда секции намотаны в одну и ту же сторону и начало одной из них соединено с концом другой. Если не выполняется одно из этих условий, то магнитные поля отдельных секций ослабляют друг друга, и при сближении секций общая индуктивность уменьшается.

Если в контуре имеется и подстроечный конденсатор и катушка с сердечником, то подстройку контура путем изменения индуктивности катушки целесообразно производить при максимальной емкости конденсатора настройки Ск, то есть тогда, когда подстроечный конденсатор Сп на резонансную частоту почти не влияет.

Используя одну секцию стандартного блока конденсаторов, две катушки и переключатель для включения этих катушек в контур (переключатель диапазонов), можно собрать детекторный приемник с плавной настройкой на ДВ и СВ диапазонах. Благодаря резонансным свойствам контура такой приемник будет обладать некоторой избирательностью и будет работать громче, чем простейший детекторный приемник, описанный ранее.

Читать дальше — Детекторный, двухдиапазонный

Пробник для настройки колебательных контуров, обычно для настройки используют связку приборов – генератор ВЧ и частотомер. Данный пробник позволяет отказаться от генератора ВЧ, и к тому же, при наличии калиброванных контуров, его самого можно использовать как генератор ВЧ. Схема пробник для настройки колебательных контуров представляет собой схему LC-генератора с выходным буферным каскадом.

Настраиваемый контур подключают к клеммам Х1 и Х2. Генератор выполнен на двух транзисторах – полевом VT1, включенным по схеме с общим стоком, и биполярным VT2, включенным по схеме с общей базой. Практически они образуют схему мультивибратора, частота которого задается контуром LxCx. Переменным резистором R2 устанавливают глубину ПОС в генераторе, с его помощью можно добиться устойчивой генерации в очень широком диапазоне частот и добротностей настраиваемых контуров.

Каскад на VT3 является буферным, он исключает влияние входа частотомера на настройку контура.

Собран пробник для настройки колебательных контуров способом объемного монтажа в коробе, спаянным из фольгированного стеклотекстолита. Вполне возможен и любой другой способ монтажа.

Работа с прибором довольно проста. Подключаем к Х1 и Х2 контур, который надо настроить. К выходу подключаем частотомер, R2 устанавливаем в нижнее по схеме положение, и включаем питание. Затем, медленно поворачивая ручку R2 добиваемся устойчивой генерации. При этом частотомер покажет текущую частоту настройки контура.

Если у контура есть подстроечный сердечник или конденсатор, – настройку можно производить плавно, не отключая контур от пробника, наблюдая за изменением частоты по частотомеру. Если же, настройка контура требует изменения числа витков катушки, замены контурного конденсатора, необходимо выключить питание, отключить контур от клемм Х1 и Х2. Внести необходимые изменения в контур, затем подключить его к клеммам Х1 и Х2, включить питания.

Отключать контур или перепаивать на нем что-то при включенном питании крайне нежелательно, так как это может привести к повреждению полевого транзистора.

Пробник для настройки колебательных контуров можно использовать и как измерительный генератор ВЧ. Для этого к клеммам Х1 и Х2 нужно подключить контур с переменным конденсатором. Сигнал можно снимать с аттенюатора, включенного вместо R7, а в качестве шкалы можно использовать частотомер.

В прошлой статье мы с вами рассмотрели последовательный колебательный контур, так как все участвующие в нем радиоэлементы соединялись последовательно. В этой же статье мы  рассмотрим параллельный колебательный контур, в котором катушка и конденсатор  соединяются параллельно.

Параллельный колебательный контур

Идеальный колебательный контур

На схеме идеальный колебательный контур выглядит вот так:

паралеллельный колебательный контур.JPG

где

L – индуктивность, Генри

С – емкость, Фарад

Реальный колебательный контур

В реальности у нас катушка обладает приличным сопротивлением потерь, так как намотана из провода, да и конденсатор тоже имеет некоторое сопротивление потерь. Потери в емкости очень малы и ими обычно пренебрегают. Поэтому оставим только одно сопротивление потерь катушки R. Тогда схема реального колебательного контура примет вот такой вид:

реальный параллельный колебательный контур.JPG

где

R – это сопротивление потерь контура, Ом

L – индуктивность, Генри

С – емкость, Фарад

Принцип работы параллельного колебательного контура

Давайте подцепим к генератору частоты реальный параллельный колебательный контур

контур с синус генератором.JPG

Что будет, если мы подадим на контур ток с частотой в ноль Герц, то есть постоянный ток? Он спокойно побежит через катушку и будет ограничиваться лишь сопротивлением потерь R самой катушки. Через конденсатор ток не побежит, потому что конденсатор не пропускает постоянный ток. Об это я писал еще в статье конденсатор в цепи постоянного и переменного тока.

Давайте тогда будем добавлять частоту. Итак, с увеличением частоты у нас конденсатор и катушка начнут оказывать реактивное сопротивление электрическому току.

Реактивное сопротивление катушки выражается по формуле

формула сопротивление катушки.png

а конденсатора по формуле

формула конденсатора.png

Более подробно про это можно прочитать в этой статье.

Если плавно увеличивать частоту, то можно понять из формул, что в самом начале при плавном увеличении частоты конденсатор будет оказывать бОльшее сопротивление, чем катушка индуктивности. На какой-то частоте реактивные сопротивления катушки XL и конденсатора XC уравняются. Если далее увеличивать частоту, то уже катушка уже будет оказывать большее сопротивление, чем конденсатор.

Резонанс параллельного колебательного контура

Очень интересное свойство параллельного колебательного контура заключается в том, что при ХL = ХС   у нас колебательный контур войдет в резонанс. При резонансе колебательный контур начнет оказывать большее сопротивление переменному электрическому току. Еще часто это сопротивление называют резонансным сопротивлением контура и оно выражается формулой:

формула резонансного сопротивления.jpg

где

Rрез  – это сопротивление контура на резонансной частоте

L – собственно сама индуктивность катушки

C – собственно сама емкость конденсатора

R – сопротивление потерь катушки

Формула резонанса

Для параллельного колебательного контура также работает формула Томсона для резонансной частоты как и для последовательного колебательного контура:

формула резонанс.jpg

где

F – это резонансная частота контура, Герцы

L – индуктивность катушки, Генри

С – емкость конденсатора, Фарады

Ладно, ближе к делу. Берем паяльник в руки и спаиваем катушку и конденсатор параллельно. Катушка на 22 мкГн, а конденсатор на 1000пФ.

DSCF4396 [1024x768].JPG

Итак, реальная схема этого контура будет вот такая:

реальный параллельный колебательный контур.JPG

Для того, чтобы все показать наглядно и понятно, давайте добавим к контуру последовательно резистор на 1 КОм и соберем вот такую схему:

.JPG»]

На генераторе мы будет менять частоту, а с клемм X1 и X2 мы будем снимать напряжение и смотреть его на осциллографе.

Нетрудно догадаться, что у нас сопротивление параллельного колебательного контура будет зависеть от частоты генератора, так как в этом колебательном контуре мы видим два радиоэлемента, чьи реактивные сопротивления напрямую зависит от частоты, поэтому заменим колебательный контур эквивалентным сопротивлением контура Rкон.

Упрощенная схема будет выглядеть вот так:

эквивалетный контур с параллельной катушкой.JPG

Интересно, на что похожа эта схема? Не на делитель ли напряжения? Именно! Итак, вспоминаем правило делителя напряжения: на меньшем сопротивлении падает меньшее напряжение, на бОльшем сопротивлении падает бОльшее напряжение. Какой вывод можно сделать применительно к нашему колебательному контуру? Да все просто: на резонансной частоте сопротивление Rкон будет максимальным, вследствие чего у нас на этом сопротивлении “упадет” бОльшее напряжение.

Начинаем наш опыт. Поднимаем частоту на генераторе, начиная с самых маленьких частот.

201 Герц.jpg

Как вы видите, на колебательном контуре “падает” малое напряжение, значит, по правилу делителя напряжения, можно сказать, что сейчас у контура малое сопротивление Rкон

Добавляем частоту. 11,4 Килогерца

11.4 Килогерца.jpg

Как вы видите, напряжение на контуре поднялось. Это значит, что  сопротивление  колебательного контура увеличилось.

Добавляем еще частоту. 50 Килогерц

50 килогерц.jpg

Заметьте, напряжение на контуре повысилось еще больше. Значит его сопротивление еще больше увеличилось.

723 Килогерца

723 КилоГерца.jpg

Обратите внимание на цену деления одного квадратика по вертикали, по сравнению с прошлым опытом. Там было 20мВ на один квадратик, а сейчас уже 500 мВ на один квадратик. Напряжение выросло, так как сопротивление колебательного контура стало еще больше.

И вот я поймал такую частоту, на которой получилось максимальное напряжение на колебательном контуре. Обратите внимание на цену деления по вертикали. Она равняется двум Вольтам.

резонанс в параллельном колебательном контуре.jpg

Дальнейшее увеличение частоты приводит к тому, что напряжение начинает падать:

увеличиваем частоту.jpg

Снова добавляем частоту и видим, что напряжение стало еще меньше:

2,47 мегаГерц.jpg

Давайте более подробно рассмотрим эту осциллограмму, когда у нас было максимальное напряжение с контура.

резонанс в параллельном колебательном контуре.jpg

Что здесь у нас произошло?

Так как на этой частоте был всплеск напряжения, следовательно, на этой частоте параллельный колебательный контур имел самое  высокое сопротивление Rкон. На этой частоте ХL = ХС. Потом с ростом частоты сопротивление контура снова упало. Это и есть то самое резонансное сопротивление контура, которое выражается формулой:

формула резонансного сопротивления.jpg

Резонанс токов

Итак, давайте допустим, мы вогнали наш колебательный контур в резонанс:

вогнали контур в резонанс.JPG

Чему будет равняться резонансный ток  Iрез ? Считаем по закону Ома:

Iрез = Uген /Rрез  , где  Rрез = L/CR.

Но самый прикол в том, что у нас при резонансе в контуре появляется свой собственный контурный ток Iкон , который не выходит за пределы контура и остается только в самом контуре! Так как с математикой у меня туго, поэтому я не буду приводить различные математические выкладки с производными и комплексными числами и объяснять откуда берется контурный ток при резонансе. Именно поэтому резонанс параллельного колебательного контура называется резонансом токов.

Кстати, этот контурный ток будет намного больше, чем ток, который проходит через контур. И знаете во сколько раз? Правильно, в Q раз.  Q – это и есть добротность! В параллельном колебательном контуре она показывает во сколько раз сила  тока в контуре  Iкон  больше сила тока в общей цепи Iрез

Или формулой:

формула добротности параллельного колебательного контура.jpg

Если сюда еще прилепить сопротивление потерь, то формула примет вот такой вид:

формула добротности через сопротивление.jpg

где

Q – добротность

Параллельный колебательный контур применяется в радиоприемном оборудовании, где надо выделить частоту какой-либо станции. Также с помощью колебательного контура можно построить различные резонансные фильтры.

Используемые источники:

  • https://oldradiogid.ru/kolebatelnyj-kontur/nastrojka-kontura/
  • https://varikap.ru/probnik-dlya-nastrojki-kolebatelnyx-konturov/
  • https://www.ruselectronic.com/parallelnyj-kolebatelnyj-kontur/

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации